行业新闻
利用强光控制核过程
2018-02-05

为获得高功率,科学家开始求助于时间域:使脉冲能量持续的时间更短。一种方法是放大钛掺杂蓝宝石晶体中的光线。此类晶体能产生拥有较宽频谱的光线。在由反射镜构成的激光器腔室中,这些脉冲被反弹回来。单个频率成分则在大多数脉冲持续时间内相互抵消,但会在仅持续几十飞秒的短暂脉冲中相互增强。为这些脉冲提供几百焦耳能量,将获得10PW峰值功率。这便是SULF和其他基于蓝宝石的激光器仅利用安装在一个大房间里并且只须花费几千万美元的设备,便能打破功率纪录的方式。相比之下,NIF的花费达35亿美元,并且需要一座10层高、面积和3个美式足球场相当的建筑物。

一旦激光器建造者解决了功率问题,另一项挑战便会到来:将光束带入异常密集的焦点。很多科学家更多地关心强度——每个单位面积的功率,而非总体的拍瓦数。实现更准的焦点定位,便意味着强度增加。如果100PW的脉冲能被聚焦到直径仅有3微米的斑点上,那么这一微小区域的强度将达到惊人的1024瓦特/平方厘米——比太阳光线照射地球的强度高出约25个数量级。

这种强度为打破真空态提供了可能。根据描述电磁场如何同物质相互作用的量子电动力学理论,真空并非如经典物理学认为的那么空。在极端的时间尺度上,因量子力学不确定性而诞生的正负电子对形成。然而,由于相互吸引,它们几乎在形成时便相互抵消了。

不过,原则上,超强激光会在粒子碰撞前将其分离。和任何电磁波一样,激光束也含有电场。随着光束的强度增加,电场的强度也在提高。俄罗斯科学院(RAS)应用物理研究所前所长、RAS 现任院长Alexander Sergeev介绍说,在1024瓦特/平方厘米的强度下,电场将强大到足以开始打破一些正负电子对之间的相互吸引。随后,激光场会使粒子振动,导致其释放电磁波——在这种情形下是伽马射线。反过来,伽马射线产生新的正负电子对,以此类推。这产生了可被探测到的粒子和辐射“雪崩”。“这将是全新的物理学现象。”Sergeev表示,伽马射线光子将拥有足够强大的能量,从而推动原子核进入激发态。这开创了一个名为核光子学的新的物理学分支——利用强光控制核过程。


返回列表